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Abstract

Deep neural networks are the state-of-the-art for various tasks and benchmarks, but they are
often not robust to slight or even negligible input perturbations. On image classification tasks,
for example, models with near-perfect accuracy can easily degrade to near-zero accuracy when
the input images change by a tiny amount that is invisible to human. We propose to improve
models’ robustness to input perturbations by adding diversity in model weights during training
with Bayesian neural networks. Our experiments on an image classification benchmark shows
that Bayesian neural networks are more robust than non-Bayesian deep neural networks trained
with norm-based regularization. We claim that introducing diversity of model weights during
model training improves model’s robustness to input perturbations.

1 Introduction
Bayesian neural networks (BNN) view each weight of a neural network as a probability distribution.
Early works on BNN by MacKay and Neal introduce prior distributions to neural network weights
and use Markov Chain Monte Carlo methods for inference (MacKay, 1992; Neal, 1992). Improving
scalability, Blundell et al. (2015) introduces Bayes by Backprop, which uses Variational Inference
and maximizes an approximate Evidence Lower Bound (ELBO). It uses gradient methods with the
reparameterization trick (Kingma and Welling, 2014; Rezende et al., 2014) to maximize the ELBO
by updating the trainable parameters to weights’ variational distributions. By adding uncertainty to
model weights, BNN achieves various advantages such as more accurate calibration of prediction
confidence and more information-grounded model pruning (Blundell et al., 2015).

In a parallel direction, previous research has shown that deep neural networks are not robust to
adversarial input perturbations that are often tiny or negligible (Moosavi-Dezfooli et al.; Rey-de
Castro and Rabitz, 2018; Poursaeed et al., 2018; Asadi and Eftekhari, 2019). Such perturbations
are universal (we can find negligible perturbation for each input image to fool the model) and
generalizable across models (adversarial perturbations targeting one model are generally hard for
other models as well) (Szegedy et al., 2013). Multiple approaches have been proposed to improve
model robustness to input perturbations, including sensitivity training (Zheng et al., 2016), batch
adjusted network gradients training (Rozsa et al., 2016) and semi-supervised training with unlabeled
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data (Carmon et al., 2019). In this work, we propose to improve adversarial robustness of models by
introducing weight diversity with Bayesian weight sampling.

2 Methods

2.1 Bayesian Neural Networks
We use a Gaussian variational posterior and a scale mixture prior for model weights of our Bayesian
neural networks (Blundell et al., 2015). The posterior distribution of each weight is parameterized
with (`, d) ∈ ℝ2 with probability density

?(F; `, d) = N(F; `, log(1 + exp(d))) (1)

We parameterize the posterior distribution in this way so that the variance parameter d is allowed to
be negative. Both ` and d are trainable parameters updated during model training.

The prior distribution of each weight is parameterized with hyperparameters (f1, f2, c) ∈ ℝ3 with
probability density

?(F;f1, f2, c) = cN(w; 0, f2
1 ) + (1 − c)N(w; 0, f2

2 ) (2)

We use the optimization procedure proposed by Blundell et al. (2015):

1. Sample n ∼N(0, �).

2. Weight sampling: set F = ` + log(1 + exp(d)) · n .

3. Let 5 (F, `, d) = log @(F |`, d) − log %(F)%(� |F)

4. Update the variational parameters:

`← ` − U 35
3`

(3)

d ← d − U35
3d

(4)

where U is the learning rate, and � is the set of training examples. During inference, we use the
weight sampled from Step 2 for forward propagation. In other words, both training and inference of
Bayesian neural networks are non-deterministic and randomized. We refer readers to Blundell et al.
(2015) for more details on optimization and inference procedures.

2.2 Adversarial Perturbations
Let 5 denote a  -way classification model. Let (G, H) denote an input example with feature G ∈ ℝ3

and label H ∈ 1 . We say that A ∈ ℝ3 is an adversarial perturbation if (a) |A | is small, and (b)
5 (G + A) ≠ H. We generate adversarial perturbation A for ( 5 , G, H) by finding the A with minimum
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norm such that 5 (G + A) ≠ H. Since it is hard to directly optimize this objective, we optimize a softer
version of the objective following Szegedy et al. (2013):

A = arg min
A∈ℝ3

2 |A | + ; ( 5 , G + A, H) (5)

where ; ( 5 , G + A, H) is the loss incurred by model 5 on the example (G + A, H) and 2 ∈ ℝ is a
hyperparameter. Different from Szegedy et al. (2013) who use a Limited-memory BFGS algorithm
for optimization, we use a gradient descent optimization method to achieve even smaller |A | norms
compared to Szegedy et al. (2013).

3 Experimental Setup

3.1 Dataset
We use a standard 10-way image classification benchmark MNIST (LeCun and Cortes, 2010) for our
experiments. We use the standard data split: 50k examples for training, 10k examples for validation
and 10k examples for testing. Following Blundell et al. (2015), we linearly scale input images to the
interval (0, 2) as a pre-processing step.

3.2 Bayesian Neural Networks
Since the main focus of this work is not model architecture, we train simple fully connected networks
FC-100-100-10 with 100 hidden units for both hidden layers and 10 units for the final output
layer. We use Rectified Linear Units (ReLU) as activation for both hidden layers and SoftMax
as activation for the final output layer. Following Blundell et al. (2015), we use hyperparameters
c = 0.5, f1 = 4−1, f2 = 4−7. We initialize ` with a Truncated Normal with the same mean and
standard deviation as the weights’ prior. We observe that the initialization of d is critical for
Bayesian neural networks and controls the diversity and uncertainty of model weights. Therefore, we
experimented with seven different constant initializations: d ∈ {−30,−10,−4,−3,−2.5,−2,−1.5}.
For optimization, we use minibatches of size 128 and SGD optimizer with learning rate 0.001 and
momentum 0.95. We use validation set accuracy for early stopping and set patience to be 5.

For fair comparison with non-Bayesian neural networks, we only use one sample of weights for
forward propagation during inference. Since inference with one weight sampling is noisy, we
average accuracies of 100 random runs. Note that this approach is different from approximate
marginalization or ensemble learning, where one would take multiple samples of weights to form an
averaged prediction and then compute a single accuracy.

3.3 Adversarial Perturbations
Adversarial perturbations are generalizable across models (Szegedy et al., 2013). In other words,
examples modified with adversarial perturbations targeting one model are generally hard for other
models as well (Szegedy et al., 2013). In order to generate a diverse collection of adversarial
perturbations, we generate adversarial perturbations targeting three different non-Bayesian neural
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Bayesian Neural Networks
log dinit -30.0 -10.0 -4.0 -3.0 -2.5 -2.0 -1.5
Validation 97.51% 97.28% 97.43% 97.29% 96.73% 96.25% 94.93%
Test 97.51% 97.46% 97.37% 97.12% 96.63% 96.07% 94.58%

Non-Bayesian Neural Networks
_ 0 10−4 10−2 1.0
Validation 97.57% 97.62% 97.80% 91.44%
Test 97.57% 97.64% 97.94% 90.91%

Table 1: Performance of Bayesian neural networks and non-Bayesian neural networks on unperturbed
validation and test set. All neural networks have structure FC-100-100-10.

network architectures: FC-10, FC-200-200-10 and FC-1200-1200-10. To generate adversarial
perturbations with different difficulty levels, for each model architecture we generate adversarial
perturbations targeting four models trained with different !2 regularization:

L = Lcross entropy + _
∑
;∈!

1
|; |

∑
F∈;

F2 (6)

where ! is the set of all layers and |; | refers to the number of units in layer ;. Because models trained
with regularization are more robust to input perturbations, we conjecture that generated adversarial
perturbations targeting models trained with large _ are intrinsically harder for other models as well.
We experimented with four different _ values: 0 (no regularization), 10−4, 10−2 and 1. Since we
have three different model architectures and four different regularization coefficients, we generated
12 sets of adversarial perturbations. We generate adversarial perturbations for the 10k test examples.

3.4 Baselines
We evaluate robustness of Bayesian neural networks and non-Bayesian neural networks by comparing
their accuracy on the generated collection of adversarial perturbations. As a fair comparison, we
train non-Bayesian neural networks of the same architecture as the Bayesian neural networks: FC-
100-100-10. To create a stronger set of baselines, we train four models with different regularization
coefficient _: 0 (no regularization), 10−4, 10−2 and 1. Allowing our baseline non-Bayesian models
to use regularization leads to stronger baseline models that are intrinsically more robust.

4 Results & Analysis

4.1 Unperturbed Accuracy
We report the accuracy ofBayesian neural networks and non-Bayesian neural networks on unperturbed
data in Table 1. We observe that for non-Bayesian neural networks, performance slightly improves
when we use weak !2 regularization (_ = 10−2) but degrades sharply when we impose an overly
strong regularization (_ = 1). For Bayesian neural networks, performance consistently decreases
with increasing initialization of d. In other words, as we increase the weight uncertainty of Bayesian
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Bayesian Neural Networks
Model Used to Generate dinit of Evaluation Model
Adversarial Perturbations -30.0 -10.0 -4.0 -3.0 -2.5 -2.0 -1.5
FC-10 (_ = 0) 94.41% 94.54% 95.14% 94.89% 93.89% 92.54% 87.13%
FC-10 (_ = 10−4) 93.36% 93.81% 94.68% 94.16% 93.16% 91.69% 85.49%
FC-10 (_ = 10−2) 75.52% 75.13% 77.44% 76.80% 73.05% 69.56% 60.51%
FC-10 (_ = 1) 82.36% 82.09% 83.48% 83.23% 80.72% 77.70% 70.69%
FC-200-200-10 (_ = 0) 90.53% 90.12% 91.41% 90.91% 89.29% 88.05% 84.04%
FC-200-200-10 (_ = 10−4) 92.47% 91.67% 92.15% 91.74% 90.15% 89.14% 85.41%
FC-200-200-10 (_ = 10−2) 85.15% 85.05% 86.43% 86.31% 83.84% 82.20% 77.52%
FC-200-200-10 (_ = 1) 73.09% 72.65% 74.39% 74.22% 70.33% 66.51% 57.29%
FC-1200-1200-10 (_ = 0) 84.52% 82.33% 86.57% 86.27% 84.89% 82.92% 78.42%
FC-1200-1200-10 (_ = 10−4) 83.07% 82.15% 85.82% 86.25% 84.42% 82.39% 78.02%
FC-1200-1200-10 (_ = 10−2) 68.72% 69.85% 75.20% 79.26% 75.44% 72.45% 66.10%
FC-1200-1200-10 (_ = 1) 48.97% 48.08% 53.76% 54.63% 48.12% 43.15% 32.18%
Average 81.01% 80.62% 83.04% 83.22% 80.61% 78.19% 71.90%

Non-Bayesian Neural Networks
Model Used to Generate _ of Evaluation Model
Adversarial Perturbations 0 10−4 10−2 1
FC-10 (_ = 0) 90.07% 88.07% 91.07% 87.40%
FC-10 (_ = 10−4) 88.68% 85.80% 89.13% 86.29%
FC-10 (_ = 10−2) 77.85% 77.07% 78.11% 21.76%
FC-10 (_ = 1) 84.60% 84.51% 84.96% 34.38%
FC-200-200-10 (_ = 0) 78.43% 77.81% 83.38% 83.53%
FC-200-200-10 (_ = 10−4) 82.73% 79.81% 86.08% 84.41%
FC-200-200-10 (_ = 10−2) 48.58% 46.38% 49.74% 83.28%
FC-200-200-10 (_ = 1) 74.59% 74.59% 75.49% 7.77%
FC-1200-1200-10 (_ = 0) 49.52% 45.89% 53.79% 82.49%
FC-1200-1200-10 (_ = 10−4) 49.19% 43.60% 51.43% 82.64%
FC-1200-1200-10 (_ = 10−2) 20.61% 17.00% 15.94% 79.95%
FC-1200-1200-10 (_ = 1) 52.21% 50.74% 54.28% 10.03%
Average 66.42% 64.27% 67.78% 61.99%

Table 2: Performance of Bayesian and non-Bayesian neural networks on perturbed test set.

neural networks, performance consistently decreases. We conjecture that the reason behind this
observation is that we are using only one weight sampling during inference and thus the inference is
noisy and unstable. Overall, Bayesian neural networks slightly under-perform non-Bayesian neural
networks on in-distribution unperturbed data.

4.2 Adversarial Perturbations
We generated adversarial perturbations following Section 3.3. We measure the average distortion of
our generated adversarial perturbations as

1
=

=∑
8=1

√
‖|A8 | |22
3
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where A8 stands for the perturbation A for the 8-th test example, = stands for the total number of
test examples and 3 stands for the feature dimension 784. The average distortion of generated
perturbations is < 0.10 for all 12 models, which is even smaller compared to Szegedy et al. (2013).

4.3 Robustness to Input Perturbations
We compare the robustness of Bayesian neural networks (Section 3.2) and non-Bayesian neural
networks (Section 3.4) by comparing their performance on twelve sets of adversarial perturbations
generated in Section 3.3. We show the results in Table 2.

First, we observe that for non-Bayesian neural networks, adding regularization does not consistently
improve model robustness to input perturbations. In the only case where regularization does bring
improvement (_ = 10−2), regularization only improves performance by 1.4 points.

Second, we observe that for non-Bayesian neural networks, performance on perturbed data improves
with increasing dinit, reaches the maximum when dinit = 4

−3, and then degrades when dinit further
increases. This concave trend of performance versus dinit is very different from the monotone
decreasing trend that we saw in Section 4.1 for performance on unperturbed data. Therefore, even
though Bayesian weight uncertainty is not helpful on unperturbed data, weight uncertainty can
improve model robustness to input perturbations.

Overall, we observe that Bayesian neural networks consistently out-perform non-Bayesian neural
networks on all twelve sets of adversarial input perturbations by an average margin of 15.4 points.
It is also noteworthy that our Bayesian neural networks out-perform non-Bayesian neural networks
with strong regularization (_ = 1) as well, which shows that Bayesian weight sampling also provides
a very efficient regularization to improve model robustness.

5 Ensemble
Because each weight in a Bayesian neural network is a probability distribution, we can easily
generate multiple sets of network weights by probabilistic sampling from weights distributions. We
can use different sets of weights as ensemble during inference. Let # denote the number of weight
samplings used for inference. Let F1, F2, ..., F# be network weights sampled from the trained
Bayesian network weight distributions. Let 5 (G |F8) denote the prediction of feature G with network
weight F8. Using multiple weight samplings as ensemble, our final prediction is

5 (G) = 1
#

#∑
8=1

5 (G |F8) (7)

All experiments in Section 4 use # = 1 for fair comparison with non-Bayesian neural networks.
However, because inference with Bayesian neural networks is inherently noisy and unstable, we
conjecture that a larger value of # may explore different areas of the loss function and produce more
accurate, robust, and stable results. Therefore, we experimented with different values of #: 1, 5, 10,
25, 100 and show performance of ensemble Bayesian networks on perturbed data in Table 3. To
report stable accuracy, for # of ensembles # , we report average accuracy across 100/# random runs.

6



Model Used to Generate # of Ensembles of Evaluation Model
Adversarial Perturbations 1 5 10 25 100
FC-10 (_ = 0) 94.75% 96.66% 96.85% 97.00% 97.11%
FC-10 (_ = 10−4) 94.30% 96.22% 96.48% 96.72% 96.68%
FC-10 (_ = 10−2) 77.02% 80.38% 80.53% 81.25% 81.22%
FC-10 (_ = 1) 83.44% 86.07% 86.22% 86.44% 86.66%
FC-200-200-10 (_ = 0) 90.97% 94.69% 95.34% 95.54% 95.76%
FC-200-200-10 (_ = 10−4) 91.79% 95.07% 95.57% 95.94% 96.13%
FC-200-200-10 (_ = 10−2) 86.60% 92.18% 93.04% 93.76% 93.64%
FC-200-200-10 (_ = 1) 74.35% 77.77% 78.45% 77.99% 78.18%
FC-1200-1200-10 (_ = 0) 86.59% 92.00% 92.67% 93.50% 94.12%
FC-1200-1200-10 (_ = 10−4) 86.13% 91.59% 92.80% 93.37% 93.48%
FC-1200-1200-10 (_ = 10−2) 78.28% 85.43% 87.31% 87.34% 87.98%
FC-1200-1200-10 (_ = 1) 54.28% 58.11% 59.12% 58.85% 58.41%
Average 83.21% 87.18% 87.86% 88.14% 88.28%

Table 3: Performance of Bayesian neural networks on perturbed test set when multiple weight
samplings are used to form ensemble predictions.

From Table 3 we can see that performance improves when we use ensemble predictions and
increase the number of weight samplings during inference. When we use an ensemble of 100
weight samplings, the average performance across 12 sets of adversarial perturbations improves
by 5.0 points compared to no ensemble. By using an ensemble of 100 weights, we improve
average performance across 12 sets of adversarial perturbations by 20.5 points compared to the
best-performing non-Bayesian neural networks in Table 2.

6 Model Pruning
Traditional model pruning techniques for non-Bayesian neural networks remove weights with
small absolute values. However, for Bayesian neural networks where each weight is a probability
distribution with trainable mean parameter ` and variance parameter f, the signal-to-noise ratio |` |

f

is more informative and leads to better performance when used for model pruning (Blundell et al.,
2015). Previous work has shown that performance of Bayesian neural networks on unperturbed
in-distribution data is relatively stable under model pruning (Blundell et al., 2015). Here we want to
investigate whether performance of Bayesian neural networks on perturbed adversarial data is stable
under model pruning as well.

We sort all network weights in increasing order of |` |
f

and remove the weights with the smallest
signal-to-noise-ratio. The pruning rate refers to the percentage of neural network weights removed.
An ensemble of 100 weight samplings is used for this experiment. We show the performance of
pruned Bayesian models on perturbed and unperturbed data with different pruning rates in Table 4.

From Table 4 we see that performance on unperturbed data stays the same when 50% of the network
weights are removed. More importantly and somewhat surprisingly, performance on perturbed data

7



Unperturbed Data
Pruning Rate 25% 50% 75% 90% 95% 98%
Original Validation 97.47% 97.54% 95.63% 77.66% 54.21% 33.52%
Original Test 97.35% 97.49% 95.59% 76.62% 53.19% 31.98%
Perturbed Data
Model Used to Generate Pruning Rate
Adversarial Perturbations 25% 50% 75% 90% 95% 98%
FC-10 (_ = 0) 95.36% 95.38% 90.54% 65.55% 46.11% 29.63%
FC-10 (_ = 10−4) 94.83% 94.90% 89.63% 63.25% 45.51% 29.10%
FC-10 (_ = 10−2) 77.96% 78.61% 72.23% 47.38% 33.67% 23.57%
FC-10 (_ = 1) 84.18% 84.32% 78.31% 54.46% 40.72% 29.67%
FC-200-200-10 (_ = 0) 91.80% 91.75% 84.34% 60.44% 43.50% 27.98%
FC-200-200-10 (_ = 10−4) 92.74% 92.49% 85.19% 60.93% 43.52% 27.73%
FC-200-200-10 (_ = 10−2) 87.87% 87.31% 78.15% 58.59% 43.97% 29.44%
FC-200-200-10 (_ = 1) 75.43% 76.08% 69.06% 44.80% 29.82% 21.32%
FC-1200-1200-10 (_ = 0) 87.69% 87.20% 77.95% 57.19% 42.31% 27.73%
FC-1200-1200-10 (_ = 10−4) 87.43% 87.06% 76.96% 57.67% 42.55% 27.65%
FC-1200-1200-10 (_ = 10−2) 80.21% 79.62% 66.12% 51.63% 43.14% 28.72%
FC-1200-1200-10 (_ = 1) 55.65% 56.01% 50.57% 30.83% 23.00% 18.40%
Average 84.26% 84.23% 76.59% 54.39% 39.82% 26.75%

Table 4: Performance of pruned Bayesian neural networks on unperturbed and perturbed data.

also stays the same with 50% of weights pruned, which means that the robustness of Bayesian neural
network is largely preserved even under significant model pruning. In fact, a Bayesian model pruned
by 75% still out-performs the best-performing non-Bayesian model by a wide margin of 8.8 points
while being 75% smaller in size.

7 Conclusion
In this work, we show that Bayesian weight sampling leads to neural networks that are significantly
more robust to adversarial input perturbations compared to non-Bayesian neural networks. The
diversity and uncertainty of network weights in Bayesian neural networks are able to mitigate the
input perturbations and thus improve robustness. By exploiting other unique strengths of Bayesian
weight sampling including ensembling and model pruning, we are able to build Bayesian neural
network models that are significantly more robust and smaller in size compared to non-Bayesian
neural network models.

8



References
N. Asadi and M. Eftekhari. 2019. A novel image perturbation approach: Perturbing latent
representation. In 2019 27th Iranian Conference on Electrical Engineering (ICEE), pages
1895–1899.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. 2015. Weight
uncertainty in neural networks. arXiv preprint arXiv:1505.05424.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. 2019.
Unlabeled data improves adversarial robustness. In Advances in Neural Information Processing
Systems, pages 11192–11203.

Diederik P. Kingma and M. Welling. 2014. Auto-encoding variational bayes. CoRR, abs/1312.6114.

Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database.

D. MacKay. 1992. A practical bayesian framework for backpropagation networks. Neural Computa-
tion, 4:448–472.

SM Moosavi-Dezfooli, A Fawzi, O Fawzi, and P Frossard. Universal adversarial perturbations.
arxiv 2017. arXiv preprint arXiv:1610.08401.

R. Neal. 1992. Bayesian training of backpropagation networks by the hybrid monte-carlo method.

Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. 2018. Generative adversarial
perturbations. InProceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4422–4431.

Roberto Rey-de Castro and Herschel Rabitz. 2018. Targeted nonlinear adversarial perturbations in
images and videos. arXiv preprint arXiv:1809.00958.

Danilo Jimenez Rezende, S. Mohamed, and Daan Wierstra. 2014. Stochastic backpropagation and
approximate inference in deep generative models. In ICML.

Andras Rozsa, Manuel Gunther, and Terrance E Boult. 2016. Towards robust deep neural networks
with bang. arXiv preprint arXiv:1612.00138.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. 2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.

Stephan Zheng, Yang Song, Thomas Leung, and Ian Goodfellow. 2016. Improving the robustness of
deep neural networks via stability training. In Proceedings of the ieee conference on computer
vision and pattern recognition, pages 4480–4488.

9

https://doi.org/10.1109/IranianCEE.2019.8786388
https://doi.org/10.1109/IranianCEE.2019.8786388
http://yann.lecun.com/exdb/mnist/

